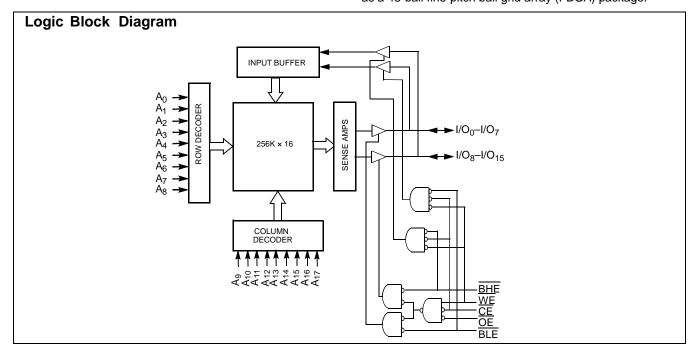


4-Mbit (256K x 16) Static RAM

Features

- Pin- and function-compatible with CY7C1041CV33
- · High speed
 - $t_{AA} = 10 \text{ ns}$
- Low active power
 - I_{CC} = 90 mA @ 10 ns (Industrial)
- · Low CMOS standby power
 - $I_{SB2} = 10 \text{ mA}$
- 2.0 V data retention
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with CE and OE features
- Available in lead-free 48-ball VFBGA, 44-lead (400-mil) Molded SOJ and 44-pin TSOP II packages


Functional Description[1]

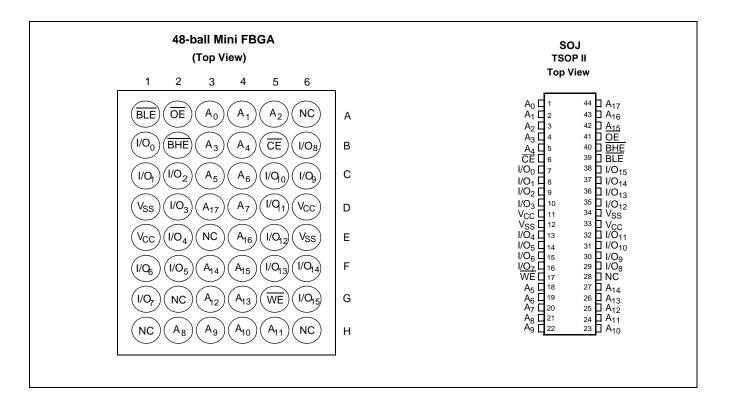
The CY7C1041DV33 is a high-performance CMOS Static RAM organized as 256K words by 16 bits. Writing to the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Write Enable ($\overline{\text{WE}}$) inputs LOW. If Byte LOW Enable (BLE) is LOW, then data from I/O pins ($\overline{\text{I/O}}_0$ – $\overline{\text{I/O}}_7$), is written into the location specified on the address pins ($\overline{\text{A}}_0$ – $\overline{\text{A}}_{17}$). If Byte HIGH Enable (BHE) is LOW, then data from I/O pins ($\overline{\text{I/O}}_8$ – $\overline{\text{I/O}}_{15}$) is written into the location specified on the address pins ($\overline{\text{A}}_0$ – $\overline{\text{A}}_{17}$).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte LOW Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on I/O $_0$ – I/O $_7$. If Byte HIGH Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O $_8$ to I/O $_{15}$. See the truth table at the back of this data sheet for a complete description of Read and Write modes.

The input/output pins (I/O $_0$ –I/O $_1$ 5) are placed in <u>a</u> high-impedance state when the <u>device</u> is de<u>selected (CE</u> HIGH), the out<u>puts are disabled (OE</u> HIGH), the BHE and BLE <u>are disabled (BHE</u>, BLE HIGH), or during a Write operation (CE LOW, and WE LOW).

The CY7C1041DV33 is available in a standard 44-pin 400-mil-wide body width SOJ and 44-pin TSOP II package with center power and ground (revolutionary) pinout, as well as a 48-ball fine-pitch ball grid array (FBGA) package.

Note


1. For guidelines on SRAM system design, please refer to the "System Design Guidelines" Cypress application note, available on the internet at www.cypress.com.

Selection Guide

	-10 (Industrial)	–12 (Automotive) ^[2]	Unit
Maximum Access Time	10	12	ns
Maximum Operating Current	90	95	mA
Maximum CMOS Standby Current	10	15	mA

Pin Configurations

Note

^{2.} Automotive product information is Preliminary.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied-55°C to +125°C Supply Voltage on V_{CC} to Relative ${\rm GND}^{[3]}$ -0.3V to +4.6V DC Voltage Applied to Outputs in High-Z State [3]-0.3V to V_{CC} +0.3V DC Input Voltage [3]-0.3V to V_{CC} +0.3V

Current into Outputs (LOW)	20 mA
Static Discharge Voltage	>2001V
(per MIL-STD-883, Method 3015)	
Latch-up Current	>200 mA

Operating Range

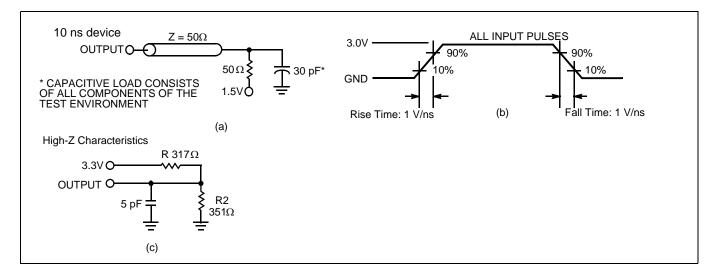
Range Ambient Temperature		V _{CC}	Speed
Industrial	-40°C to +85°C	$3.3V \pm 0.3V$	10 ns
Automotive	-40°C to +125°C	$3.3V \pm 0.3V$	12 ns

DC Electrical Characteristics Over the Operating Range

Daramatar	Description	Toot Conditions		–10 (In	-10 (Industrial)		-12 (Automotive)	
Parameter	Description	Test Conditions		Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$		2.4		2.4		V
V _{OL}	Output LOW Voltage	V_{CC} = Min., I_{OL} = 8.0 mA			0.4		0.4	V
V _{IH} [3]	Input HIGH Voltage			2.0	V _{CC} + 0.3	2.0	V _{CC} + 0.3	V
V _{IL} [3]	Input LOW Voltage			-0.3	0.8	-0.3	0.8	V
I _{IX}	Input Leakage Current	$GND \le V_1 \le V_{CC}$		-1	+1	– 1	+1	μА
I _{OZ}	Output Leakage Current	$GND \leq V_{OUT} \leq V_{CC}, Output Disabled$		– 1	+1	– 1	+1	μА
I _{CC}	V _{CC} Operating				90		-	mΑ
	Supply Current		83MHz		80		95	mA
			66MHz		70		85	mA
			40MHz		60		75	mA
I _{SB1}	Automatic CE Power-down Current—TTL Inputs	$\begin{aligned} &\text{Max. } V_{CC}, \overline{CE} \geq V_{IH} \\ &V_{IN} \geq V_{IH} \text{ or } \\ &V_{IN} \leq V_{IL}, f = f_{MAX} \end{aligned}$			20		25	mA
I _{SB2}	Power-down Current—CMOS Inputs	$\begin{array}{l} \underline{\text{Max}}. \ V_{CC}, \\ CE \geq V_{CC} - 0.3V, \\ V_{IN} \geq V_{CC} - 0.3V, \\ \text{or } V_{IN} \leq 0.3V, \ f = 0 \end{array}$			10		15	mA

Note

^{3.} Minimum voltage is–2.0V and $V_{IH}(max) = V_{CC} + 2V$ for pulse durations of less than 20 ns.


Capacitance^[4]

Parameter	ter Description Test Conditions		Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25$ °C, $f = 1$ MHz, $V_{CC} = 3.3$ V	8	pF
C _{OUT}	I/O Capacitance		8	pF

Thermal Resistance^[4]

Parameter	Description	Test Conditions	FBGA Package	SOJ Package	TSOP II Package	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient)	Still Air, soldered on a 3 x 4.5 inch,	27.89	57.91	50.66	°C/W
Θ _{JC}	Thermal Resistance (Junction to Case)	four-layer printed circuit board	14.74	36.73	17.17	°C/W

AC Test Loads and Waveforms^[5]

Notes

- 4. Tested initially and after any design or process changes that may affect these parameters.
- 5. AC characteristics (except High-Z) are tested using the load conditions shown in Figure (a). High-Z characteristics are tested for all speeds using the test load shown in Figure (c).

AC Switching Characteristics Over the Operating Range^[6]

D	Description.	–10 (In	dustrial)	–12 (Au	tomotive)	11!1
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle				•		
t _{power} ^[7]	V _{CC} (typical) to the first access	100		100		μS
t _{RC}	Read Cycle Time	10		12		ns
t _{AA}	Address to Data Valid		10		12	ns
t _{OHA}	Data Hold from Address Change	3		3		ns
t _{ACE}	CE LOW to Data Valid		10		12	ns
t _{DOE}	OE LOW to Data Valid		5		6	ns
t _{LZOE}	OE LOW to Low-Z	0		0		ns
t _{HZOE}	OE HIGH to High-Z ^[8, 9]		5		6	ns
t _{LZCE}	CE LOW to Low-Z ^[9]	3		3		ns
t _{HZCE}	CE HIGH to High-Z ^[8, 9]		5		6	ns
t _{PU}	CE LOW to Power-Up	0		0		ns
t _{PD}	CE HIGH to Power-Down		10		12	ns
t _{DBE}	Byte Enable to Data Valid		5		6	ns
t _{LZBE}	Byte Enable to Low-Z	0		0		ns
t _{HZBE}	Byte Disable to High-Z		6		6	ns

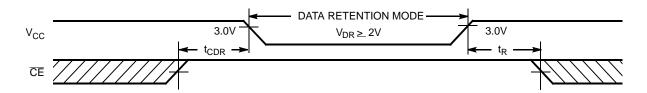
Notes

^{6.} Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.

7. I_{POWER} gives the minimum amount of time that the power supply should be at typical V_{CC} values until the first memory access can be performed.

8. I_{HZOE} , I_{HZCE} , I_{HZCE} , and I_{HZWE} are specified with a load capacitance of 5 pF as in part (c) of AC Test Loads. Transition is measured when the outputs enter a high impedance state.

^{3.} At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, t_{HZDE} is less than t_{LZBE}, and t_{HZWE} is less than t_{LZWE} for any given device.

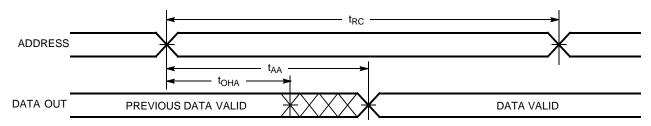

AC Switching Characteristics Over the Operating Range^[6](continued)

Parameter	Decemention	–10 (In	dustrial)	-12 (Aut	tomotive)	l lmit
	Description	Min.	Max.	Min.	Max.	Unit
Write Cycle ^[10, 11]	•	•	•			
t _{WC}	Write Cycle Time	10		12		ns
t _{SCE}	CE LOW to Write End	7		8		ns
t _{AW}	Address Set-Up to Write End	7		8		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	7		8		ns
t _{SD}	Data Set-Up to Write End	5		6		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{LZWE}	WE HIGH to Low-Z ^[9]	3		3		ns
t _{HZWE}	WE LOW to High-Z ^[8, 9]		5		6	ns
t _{BW}	Byte Enable to End of Write	7		8		ns

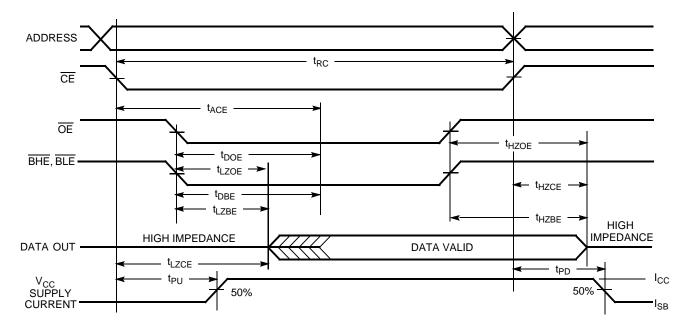
Data Retention Characteristics Over the Operating Range

Parameter	Description	Conditions ^[12]	Min.	Max.	Unit	
V_{DR}	V _{CC} for Data Retention			2.0		V
I _{CCDR}	Data Retention Current	$\frac{V_{CC} = V_{DR} = 2.0V,}{CE \ge V_{CC} - 0.3V,}$	Ind'l		10	mA
		$CE \ge V_{CC} - 0.3V,$ $V_{IN} \ge V_{CC} - 0.3V \text{ or } V_{IN} \le 0.3V$	Auto		15	mA
t _{CDR} ^[4]	Chip Deselect to Data Retention Time			0		ns
t _R ^[13]	Operation Recovery Time			t _{RC}		ns

Data Retention Waveform


^{10.} The internal Write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a Write, and the transition of either of these signals can terminate the Write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the Write.
11. The minimum Write cycle time for Write Cycle No. 4 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.
12. No input may exceed V_{CC} + 0.3V.
13. Full device expectation required linear Very type of the signal that terminates the Write.

^{13.} Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} \ge 50 \,\mu s$ or stable at $V_{CC(min.)} \ge 50 \,\mu s$

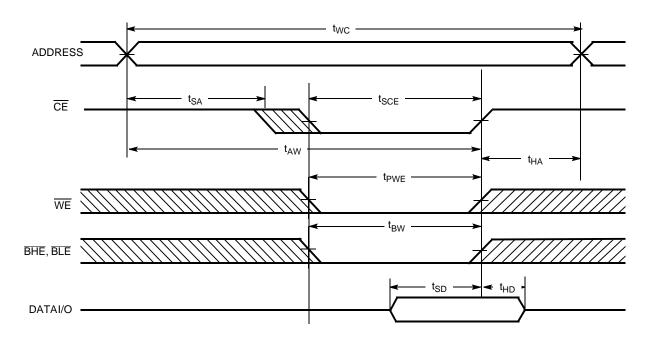


Switching Waveforms

Read Cycle No. 1^[14, 15]

Read Cycle No. 2 (OE Controlled)[15, 16]

^{14. &}lt;u>Device</u> is continuously selected. <u>OE</u>, <u>CE</u>, <u>BHE</u> and/or <u>BHE</u> = V_{IL}.

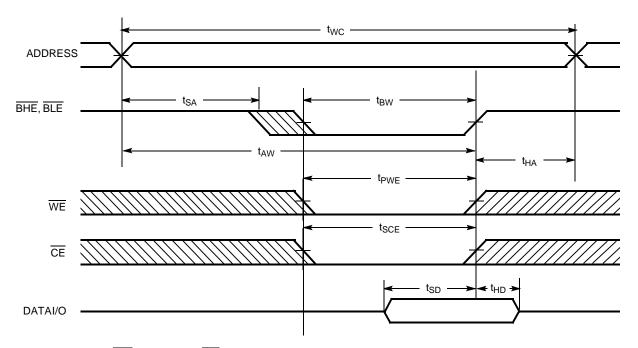

15. <u>WE</u> is HIGH for Read cycle.

16. Address valid prior to or coincident with <u>CE</u> transition LOW.

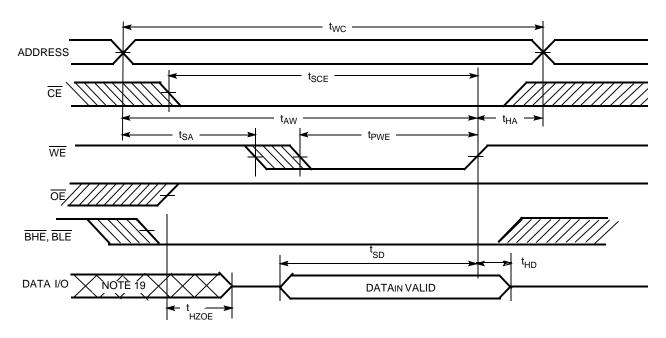
Switching Waveforms (continued)

Write Cycle No. 1 (CE Controlled)[17, 18]

Notes


17. Data I/O is high-impedance if \overline{OE} or \overline{BHE} and/or $\overline{BLE} = V_{IH}$.

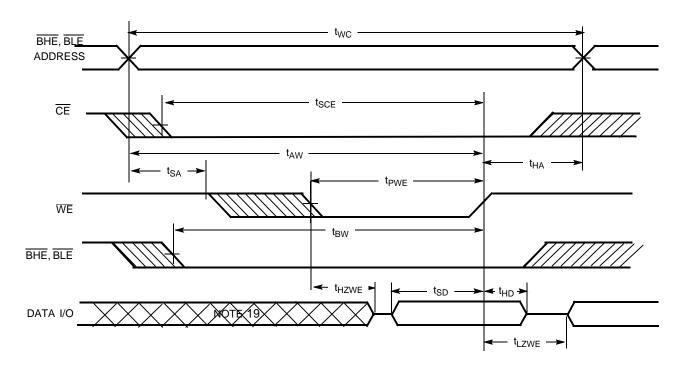
18. If \overline{CE} goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.



Switching Waveforms (continued)

Write Cycle No. 2 (BLE or BHE Controlled)

Write Cycle No. 3 (WE Controlled, OE HIGH During Write)[17, 18]


Note

^{19.} During this period the I/Os are in the output state and input signals should not be applied.

Switching Waveforms (continued)

Write Cycle No. 4 (WE Controlled, OE LOW)

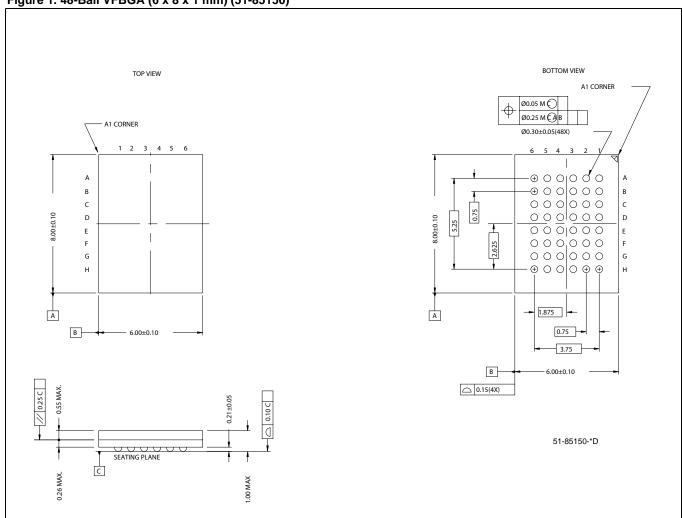
Truth Table

CE	OE	WE	BLE	BHE	I/O ₀ –I/O ₇	I/O ₈ -I/O ₁₅	Mode	Power
Н	Х	Х	Х	Х	High-Z	High-Z	Power-down	Standby (I _{SB})
L	L	Н	L	L	Data Out	Data Out	Read All Bits	Active (I _{CC})
L	L	Н	L	Н	Data Out	High-Z	Read Lower Bits Only	Active (I _{CC})
L	L	Н	Н	L	High-Z	Data Out	Read Upper Bits Only	Active (I _{CC})
L	Χ	L	L	L	Data In	Data In	Write All Bits	Active (I _{CC})
L	Χ	L	L	Н	Data In	High-Z	Write Lower Bits Only	Active (I _{CC})
L	Χ	L	Н	L	High-Z	Data In	Write Upper Bits Only	Active (I _{CC})
L	Н	Н	Х	Х	High-Z	High-Z	Selected, Outputs Disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
10	CY7C1041DV33-10BVI	51-85150	48-ball VFBGA	Industrial
	CY7C1041DV33-10BVXI	1	48-ball VFBGA (Pb-Free)	
	CY7C1041DV33-10VXI	51-85082	44-lead (400-mil) Molded SOJ (Pb-Free)	
	CY7C1041DV33-10ZSXI	51-85087	44-pin TSOP II (Pb-Free)	

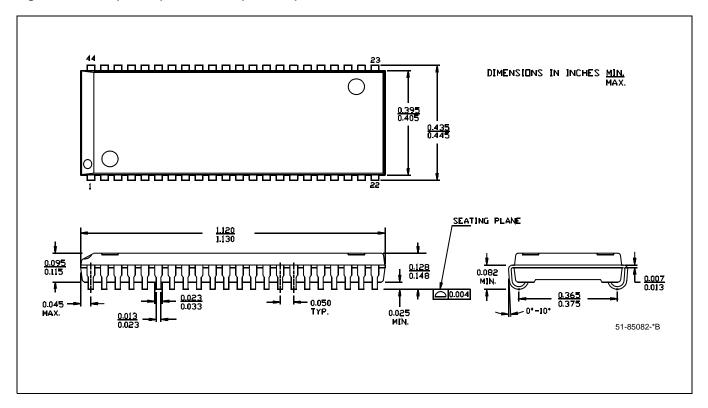
Document #: 38-05473 Rev. *D


Ordering Information

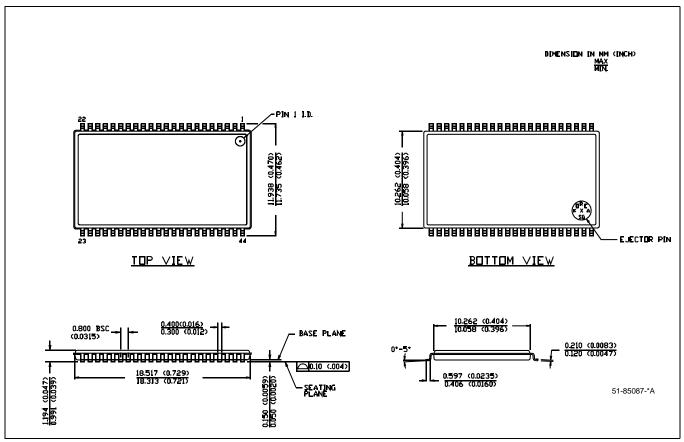
Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
12	CY7C1041DV33-12BVXE	51-85150	48-ball VFBGA (Pb-Free)	Automotive
	CY7C1041DV33-12VXE	51-85082	44-lead (400-mil) Molded SOJ (Pb-Free)	
	CY7C1041DV33-12ZSXE	51-85087	44-pin TSOP II (Pb-Free)	

Please contact your local Cypress sales representative for availability of these parts

Package Diagrams


Figure 1. 48-Ball VFBGA (6 x 8 x 1 mm) (51-85150)

Package Diagrams(continued)


Figure 2. 44-lead (400-mil) Molded SOJ (51-85082)

Package Diagrams(continued)

Figure 3. 44-pin TSOP II (51-85087)

All products and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	201560	See ECN	SWI	Advance Data sheet for C9 IPP
*A	233729	See ECN	RKF	1.AC, DC parameters are modified as per EROS(Spec # 01-2165) 2.Pb-free offering in the 'Ordering information'
*B	351117	See ECN	PCI	Changed from Advance to Preliminary Removed 15 and 20 ns Speed bin Corrected DC voltage (min) value in maximum ratings section from - 0.5 to - 0.3V Redefined I _{CC} values for Com'l and Ind'l temperature ranges I _{CC} (Com'l): Changed from 100, 80 and 67 mA to 90, 80 and 75 mA for 8, 10 and 12ns speed bins respectively I _{CC} (Ind'l): Changed from 80 and 67 mA to 90 and 85 mA for 10 and 12ns speed bins respectively Added Static Discharge Voltage and latch-up current spec Added V _{IH(max)} spec in Note# 2 Changed Note# 4 on AC Test Loads Changed reference voltage level for measurement of Hi-Z parameters from ±500 mV to ±200 mV Added Data Retention Characteristics/Waveform and footnote # 11, 12 Added Write Cycle (WE Controlled, OE HIGH During Write) Timing Diagram Changed Package Diagram name from 44-pin TSOP II Z44 to 44-pin TSOP II Z544 and from 44-lead (400-mil) Molded SOJ V44 Changed part names from Z to ZS in the Ordering Information Table Added 8 ns Product Information Added Lead-Free Ordering Information Shaded Ordering Information Table
*C	446328	See ECN	NXR	Converted from Preliminary to Final Removed -8 speed bin Removed Commercial Operating Range product information Included Automotive Operating Range product information Updated Thermal Resistance table Updated footnote #8 on High-Z parameter measurement Updated the ordering information and replaced Package Name column with Package Diagram in the Ordering Information Table
*D	480177	See ECN	VKN	Added -10BVI product ordering code in the Ordering Information table